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Structural Engineering is the art of molding materials we do not really understand, 

into shapes we cannot really analyze, so as to withstand forces we cannot really assess, 

in such a way that the public does not really suspect. 

                                                      Ross Corotis 



2 

1. Probabilistic Concept 
 

(1). Quantification of the safety 

  A decision made by an expert on the safety of a structure influences the safety of other 

individuals such as the life or the property.  Therefore the openness and transparency 

of decision process are generally required.  In order to satisfy such requirements, the 

quantification of safety is necessary.  In particular a quantitative measure for the 

safety is introduced to find a solution as the balance between the economy, the 

environmental impacts and the efficiency.  ISO2394 [1] was produced to provide such a 

measure for the structural safety in order to eliminate the tax barrier for the world-wide 

trade. 

  For infra-structures including such as bridges, tunnels, dams and buildings, on which 

any future phenomena will influence, only probabilistic estimation of future events is 

possible as nobody knows what happens in future in a definite way.  In other words a 

probabilistic measure should be used for the quantitative safety for structures. 

  The probability is a concept for quantitative evaluation of uncertain physical property.  

It is convenient for the evaluation of environment or safety over time or space.  When 

the probabilistic evaluation is supported by statistical data, the model is considered 

consistent.  However even if there is not sufficient statistical information, experts can 

provide reasonable models based on their subjective judgments.  Sufficient number of 

data are generally not possible for rare events such as earthquakes.  Therefore experts 

are always responsible for probabilistic models for safety evaluations. 

 

(2). Fundamentals for the probability 

When X  is a random variable, the cumulative distribution function can be defined 

accordingly. 

   ]Pr[)( xXxFx                                                    (1) 

The probability density function is the derivative of the cumulative distribution 

function with respect to x . 

   dx

xdF
xf x

x

)(
)( 

                                                     (2) 

Representative values which characterize these functions are introduced.  They are the 

mean (the first moment), mode and median and the variance (the second moment), the 

standard deviation and the coefficient of variation. 

   mean:  
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                                           (3a) 
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   mode:  x̂   
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   median x~   5.0)~( xFX                                              (3c) 

and 

   variance  



 dxxfx XXX )()( 22 

                                 (4) 

   standard deviation X  

   coefficient of variation (c.o.v.)  X

X
XV





                                (5) 

 

 

Figure 1 (a) Probability density function and (b) cumulative distribution function  
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(3). Useful probability distributions 

  The Gaussian distribution is a common example for the probability model and also 

known as the normal distribution. 
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In Gaussian distribution the mean   and the standard deviation   are all 

parameters necessary to describe the distribution.  A special case with 0  and 

1  is known as the standard normal distribution and the density function is written 

as,  
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  Another common distribution used in the structural engineering is the log-normal 

distribution, where the logarithm of x  is normally distributed. 
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where   is the mean of xln  and   is the standard deviation of xln .  When   is 

sufficiently less than 1, the following approximation is also useful. 
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(4). Reliability index and probability of failure 

  The safety means that the structure does not fail in a period of interest.  By simple 

definition of being safety is that the resistance of structure exceeds the load effects, 

which are the responses of structure as consequences of loads acting on the structure.  

  The definition of probability of failure is written as the definition. 

]Pr[]0Pr[ QRzPf 
                                           (10) 

where R  is the resistance and Q  is the load effects and QRz  . Then the 

reliability index can be defined as using the mean   and the standard deviation   

as, 
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When  R  and Q  are variables of Gaussian distribution, the integral of equation (12) 

can be performed by using the standard normal distribution function )(s  and its 

derivative, the probability density function )(s  as, 
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Then the reliability index   is uniquely corresponds to the probability of failure, fP
, 

via Gaussian distribution, i.e., 

 
 fP

                            (13) 

The exact expression of the probability of failure for two variables R  and Q  is given 

in a form of convolution integral as, 

  



 dxxfxFP QRf )()(

                                                (14) 

 

(5). Risk management 

When the absolute safety is not possible, we, as engineers, have to make efforts to 

reduce the risk for the society.  However we can reduce it to only a certain level since 

the uncertainty can not be eliminated, then we have to find out to transfer the risk to 

other systems.  The insurance is one of the ways for the risk transfer.  If the loss is 

evaluated in terms of the economical value, some kinds of financial management can be 

applied to the engineering risk problems. 

The exact strength of the components can not be known and the maximum load 

intensity in future cannot be assessed without uncertainties.  And yet if the probability 

of failure is less than 10-6 for example, we feel we are sufficiently secured in the 

ordinary life.  Nevertheless, we face the possible failure which could cause a serious 

financial problems and need counter measures for the failure.  Obviously we respond to 

the failure event according to the amount of risk. 
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Risk always deals with problems of the human loss or the casualty.  Such problems can 

not be compensated simply with the financial replacement, but have to be considered for 

the safety issue when the safety degree can be controlled to a certain extent. 

 

Table 1 Probability of life loss 

 Cause for loss of life  Annual probability 

 Traffic accident  0.00008 

 Mountain climbing（international）  0.003 

 Airplane（crew）  0.001 

 Airplane（passengers）   0.0002 

 Fire   0.000001 

 Domestic accident  0.0001 

 Building（U.K.）   0.0000001 

  Building（Japan）  0.000001 

  Construction work  0.0004 

  Cancer due to nuclear accident（USA）  0.0001 

 

 

REFERENCES 
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[1-3]. R.E. Melchers: Structural Reliability, 2nd ed., John Wiley and Sons Ltd, 1999 

[1-4]. D. Elms(ed): Owing the Future, CAE, University of Canterbury, NZ, 1998 

[1-5]. D.S.Miletti; Disasters by Design, Joseph Henry Press 
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2. Annual Maximum Load Events 
 

 It is interesting to find analogical resemblances between structural safety and 

environmental safety, often called as environmental risk.  Characteristics of 

loading or input play important roles in both safety problems.  The social sciences 

have expanded their views to the environments based on some achievements for 

industrial pollutions such as Minamata disease or Kawasaki asthma.  As we have 

many experiences of earthquakes, typhoons and heavy snows in Japan, views from 

residents, living persons and victims are needed to consider the structural safety. 

   

  For example when you compare the price of transportation, driving a private car 

is often cheaper than the train ticket.  Cost of the road construction and traffic 

accidents should be counted as social cost for better environment. Some statistics 

tell that road construction and maintenance cost 2 million yen per car. 

 

  When a building is built, there is a risk for collapse due to natural environmental 

loads.  Unfortunately this is not visible in many cases.  And most buildings are 

demolished intentionally before its durable life limit because the probability of 

failure due to earthquakes or typhoons is very small, say 10-2 or 10-3 or even less.  

People can live without paying attention to such a possible collapse.  But if you 

imagine the consequences of collapse, it is understood that any buildings have a 

negative property potential, which is not usually counted in a similar manner as the 

cost of water pollution or air pollution was not counted unless it becomes the social 

problems.  If the failure probability is different for buildings, the society has to 

take actions according to the probability.  This aspect will be discussed later in 

chapter 6.  

 

(1). Characteristics of maxima 

  We have defined the probability distribution for a random variable.  If we find 

special characteristics for the probability distribution, we should utilize such 

characteristics.  Extreme value distributions are introduced by reflecting such 

characteristics.  As we are interested in the maxima for loads, the right hand side 

tail of distribution has to be considered. 

  Some conditions are also discussed, e.g., 

    (a). homogeneity,  (b). independence, (c). sufficient number of data   etc. 

  As the natural phenomena such as the wind, snow or earthquake, are influenced 
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by many natural environmental parameters.  Strictly speaking all the conditions 

mentioned above may not hold, but when we discuss maxima such as annual 

maxima, we can accept such conditions for the simplicity.  The verification may be 

possible but only indirectly, as we want to make a use of probability models for 

prediction of future events.   

 

(2). Return Period 

  The return period, R , is defined as the inverse of probability of exceedance as, 

         
P

R
1

                                                      (0) 

This concept is applicable to an independent random variable of an identical 

distribution.  The probability of exceeding a certain value at the first time is 

considered.  The probability of exceedance in the first year is P , then the 

probability of exceeding the value at the first time in the second year is the product 

of the probability of non-exceedance in the first year and the probability of 

exceedance, i.e., PP)1(  .  By summing up to the infinity, it is clearly shown that 

the probability becomes 1, which means that if there is a probability of exceedance, 

an event greater than a certain value will occur in infinite time.  This is confirmed 

by the mathematical expressions as, 

      
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Then consider the expected year for the first time of exceedance, which is obtained 

in the following expression and defined as R , 

     




 
1
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t

t RPPt  

A mathematical manipulation is made. 

      

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


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t t
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Then the relation of equation (0) is confirmed. 

 

(3)．Derivation of Gumbel Distribution 

When the parent distribution has a tail differentiable infinity times, the Gumbel 

distribution can be derived.   

 

maxX  can be described as the maximum of n independent variables, nXXX ,, 21 . 
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The cumulative distribution can be obtained for an independent and identical case, 

          nn xPxF )()(                                                  (2) 

The probability density function can be obtained by differentiating eq.(2) 

      )()()( 1 xpxPnxf n                      (3) 

Further differentiation leads to, 
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Consider the mode nu .  From the definition, 

    0)(  nuf                           (5) 

By substituting nux   into eq.(4) 
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When x  is sufficiently large（the maximum of n variables is considered）, 

    1)( xP ， 0)( xp ， 0)(  xp   then, 

From L’Hospital’s rule, 
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nux   is also sufficiently large and by comparing  eqs.(6) and (7), 

    
n

uP n

1
1)(    is obtained.                  (8) 

Then Taylor’s expansion for )(xP  is developed at nux  , 
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Each differential can be obtained one by one.  From eqs(7) and (8), 

    )()( 2
nn unpup                         (10) 

When it is differentiable infinity times, L’Hospital’s rule can be applied one by one 

and by differentiating both the numeral and the denominator of eq(7), 

   For x  ,  
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 then by substituting eq(10), 
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Similarly 
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By substituting eqs(8), (10), (11) and (12) into eq(9) , 
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where )( nn unp  

The distribution for the maximum of n variables can be obtained as the n-th power 

of eq(13). 

Then the asymptotic extreme value distribution is developed, i,e, n . 
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Letting )( nn uxe     （
n


 is sufficiently less than 1.） 
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A distribution of double exponential form is derived and is called as Gumbel 

distribution [2-1].   

 

Gumbel:    )(expexp)( bxaxF    for  x ,   

           45.0 b ,  a/28.1  

 

(4)．Other forms of extreme value distribution  

Frechet:  
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Weibull:  
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(5)．Estimation of parameters 

When we have data, we want to make a model by estimating parameters. 

Moment method, Least squares method and Most likely-hood method are commonly 

used.  Moment method for Gumbel distribution is very simple.  For least squares 

method, you have to plot data on probability paper. 

Hazen plot       NiNFi /)5.0(   may be good enough. 

  Thomas plot      )1/()1(  NiNFi  was recommended by Gumbel. 

  Gringorten plot   )21/()1( aNaiNFi   is most reasonable. 

Verification for the best plotting method can be made by Monte Carlo simulation for 

a known distribution model. 

 

References:  
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[2-2]. Jun Kanda, A New Extreme Value Distribution with Lower and Upper Limits 

for Earthquake Motions and Wind Speeds, Theoretical and Applied Mechanics, 

vol.31, 1982, pp351-360. 

[2-3] Kanda, J. & Nishijima, K., Wind loads and earthquake ground motions as 

stochastic processes, Proc. ASRANet (CD rom), Glasgow, 2002 



12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Annual maximum bedrock velocities in four sites in Japan with Frechet 

distributions and Kanda distributions [2-3] 

 (c) Sendai                              (d) Tokyo 

(a) Fukuoka    (b)Osaka  
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3. Probabilistic Earthquake Model 
 

  Earthquake ground motions are vibrations of the ground caused by the earthquake.  

Earthquakes are caused by a sudden rupture of fault where the stress was accumulated 

in the plate or the plate boundary.  The energy was released at the ruptured area and 

was propagated to the surrounding soil layers. 

- Plate tectonics: plate boundary earthquake (Great Kanto 1923), inland earthquake 

(Hyogoken-nambu 1995) 

- Magnitude and Seismic Intensity: Surface wave magnitude, Moment magnitude, JMA 

intensity, MM intensity 

- Active fault: Uemachi fault (Osaka, Occurrence Probability 0.00156/year), Kozu 

Matsuda fault (Kanagawa, 0.00118/year), Arakawa fault (Tokyo, 0.0003/year) 

- Attenuation formula: Kanai, Joyner＆Boore , Fukushima, Annaka etc. 

                       ),(max  MfA                                     (1) 

where M  : magnitude,    : distance 

 

(1). Statistical approach for seismic hazard 

Annual maximum PGA (Peak Ground Acceleration) or PGV (Peak Ground Velocity) 

values are estimated from historical earthquakes by an attenuation formula.  The 

annual maxima are plotted on the probability paper to find a probability model. 

Frechet distribution has been used. 

Return period conversion factor: 

54.0
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Q

Q
                           (2) 

where iQ  ( 2,1i ) is the PGA corresponding to the return period of iR .  Basic values 

in AIJ load recommendation(1993) are available for 1001 R  (years). 

 

(2). Earthquake occurrence model for seismic hazard 

Gutenberg-Richter model: Mban log                          (3) 

Specific active faults with their occurrence probabilities have been available. 

Access to http://www.j-shis.bosai.go.jp/ to find hazard map in J-SHIS 

 

Characteristics of earthquake ground motion 

- Intensity: PGA, PGV 

- Duration time: Jenning’s type envelope function 

- Spectral characteristics: Power spectrum (stochastic measure), Response spectrum 
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(deterministic measure) (Acceleration, Velocity, Displacement) 

 

(3). Earthquake resistant design: 

Earthquake load can be modeled by a product of various parameters such as: 

iiSti WADRCE 0                                              (4) 

Base shear coefficient 0C : base shear force divided by the weight above the story or the 

response acceleration divided by the gravity.   

        2.00 C  for the allowable stress design 

        0.10 C  for the capacity design (since 1981) 

tR  factor: spectral characteristics are reflected according to the soil type 

sD  factor: equivalent elastic limit for considering inelastic deformation (since 1981) 

iA  factor: amplification factor for the i-th story. 

 

 

(4). Seismic safety evaluation: 

Access to http://ssweb.k.u-tokyo.ac.jp/  or  http://ssweb-b.k.u-tokyo.ac.jp/ 

 

- a simplified prediction of seismic safety in Japan 

According to the investigation for damages due to the Hyogoken-Nambu earthquake 

(1995) in the area of 15km by 5 km including the most severely damaged area, the 

collapse ratio of buildings built after 1981 is on the order of 0.5% for PGA of 6m/s2 

(Kanda, 1997[3-3]).  

A typical value of PGA corresponding to 500 year return period (1/500 as the annual 

exceedance probability) in a high seismic activity zone in Japan is 4m/s2 and the seismic 

load represented by PGA is normally assumed to follow the Frechét distribution. In 

order to roughly estimate the reliability of the building, the seismic load is converted to 

the equivalent log normal distribution by applying equation (1), which is a return period 

conversion formula proposed in Load Recommendation of Architectural Institute of 

Japan (1993) in order to obtain the seismic load in terms of 50 year maximum, 

1
i

i

R
F




, where iF  is the exceedance probability in 50 years. Here we adopt 

2
1 4 /Q m s , 1 10R  (corresponding to 50x10=500 years). In order to obtain the median 

value of 50 years maximum, 22 R  is substituted into equation (2) because the 

median is the 50%-quantile meaning 2 0.5F  . iR  in equation (2) is the return period 
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in year in the original form, but because of the nature of power law expression, iR  can 

be the inverse of the exceedance probability in any reference period, such as 50 years in 

this case. 

Then 7.12 Q  is obtained as the median value of 50 year maximum of seismic load. 

An equivalent log-normal distribution at these two probability points, namely 

50%-quantile and 90%-quintle may correspond to the distribution with the logarithmic 

mean of 7.1ln  and the logarithmic standard deviation of 0.66. 

As for the resistance of buildings, in a similar manner, by assuming the logarithmic 

standard deviation of 0.4 for the collapse ratio, the median is estimated as 16.8 m/s2 

from the collapse ratio of 0.5% for 6 m/s2.  Then the reliability index based on 

log-normal distributions for both the hazard PGA and the collapse ratio can be 

calculated as, 

96.2
66.04.0

7.1ln8.16ln
22





  

This value corresponds to the probability of failure in 50 years of 0.0015.  It is 

interesting to note that the probability of collapse estimated from the damage statistics 

is one order smaller than that regarded for the target safety criteria of design practice, 

i.e. the reliability index of 2 (Aoki et al, 2000[3-3]).   

 

(5). Social system for seismic safety 

- Seismic insurance 

     

Table 1  Annual basic premium for RC or S structures. [3-4] 

 Sapporo Sendai Tokyo Nagoya Osaka Hiroshima Takamatsu Kitakyushu

Premium 

(%) 

0.05 0.07 0.175 0.135 0.135 0.05 0.05 0.05 

   This table shows the current insurance premium for houses in Japan.  The 

premium is basically applied to any houses in Japan and is considered to be rather 

higher than the expected annual loss estimates based on the seismic safety analysis.  

 

- Indication of performance for fair trade 

    Reliability index defined by ISO2394 is one of example. 

 

- Responsibility of Professionals 

- Responsibility of individuals 

- Promotion for seismic strengthening: 
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Subsidy for diagnosis, subsidy for strengthening 

Non-retroactive for existing disqualified buildings 

- Regulationｓ and Standardｓ 
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Figure 3.  An example of seismic hazard map for10% in 50 year maximum PGV  

(in cm/s)     cf. http://ssweb.k.u-tokyo.ac.jp/indexe.htm 

128˚E

128˚E

130˚E

130˚E

132˚E

132˚E

134˚E

134˚E

136˚E

136˚E

138˚E

138˚E

140˚E

140˚E

142˚E

142˚E

144˚E

144˚E

146˚E

146˚E

148˚E

148˚E

26˚N 26˚N

28˚N 28˚N

30˚N 30˚N

32˚N 32˚N

34˚N 34˚N

36˚N 36˚N

38˚N 38˚N

40˚N 40˚N

42˚N 42˚N

44˚N 44˚N

46˚N 46˚N

0
10
20
30
40
50
60
70
80
90

100



18 

4. FOSM Reliability 

 

(1). Reliability Index based on AFOSM 

  The definition of reliability index by equation (11) on page 5 can be applied to 

non-linear and non-Gaussian cases.  Another definition by equation (13) on page 5 is 

alternatively used and approximately correct for equation (11). 

  The limit state function can be defined for more than 2 random variables; 

   0),,( 21 xxG    desirable condition    (safe)                         (1a) 

   0),,( 21 xxG                         (limit state)                    (1b) 

   0),,( 21 xxG    non-desirable condition (failure)                       (1c)  

 

All variables are normalized by subtracting the mean and dividing by the standard 

deviation as, 

   
i

ii
i

x
s




                                                           (2) 

Then ),,(),,( 2121  xxGssH                                          

A set of normalized variables, which satisfy the limit state condition equals 0, can be 

indicated as *
is , i.e.,  

0),,( *
2

*
1 ssH                                                       (3) 

And the limit state function is linearized at this point by Taylor’s expansion with the 

first derivative terms. 

   
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21
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                                      (4) 

When variables are mutually independent, the mean and the standard deviation of H  

can be obtained as, 
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



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
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
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i

i
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H s
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H *
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                            (5） 

  











i i

H s

H
2

*

                            （6） 

where the subscript * means partial derivatives at the set of *
is . 

Then the reliability index according to the definition of equation (11) on page 5 can be 
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written as, 

2
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                                                   (7) 

The linearization is again applied to the square root of the sum of squares of the 

denominator term, by introducing the separation factor i . 
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*           note that    12  i                        (8) 

Then the equation(7) becomes, 

   *
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i
i iii
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H

s

H  
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                                               (9) 

It can be regarded that this equation is valid irrespective of 
*











is

H
, then; 

  *
ii s       or      iis *                                           (10) 

Now the reliability index is obtained. 

     2
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2* }{})({})({

i
i

i
i

i
is                                (11) 

The iteration is necessary as the set of *
is  can not be appropriately chosen at first.  

The procedure will be as follows, 

① Assume that all *
is  as 0. which corresponds to the mean of ix . 

② Partial derivatives 
is

H




at *
ii ss   are calculated. 
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③ The separation factor i  is calculated by equation (8). 

④ By substituting equation (10) into equation (3) to solve  . 

⑤ 
*
is  is renewed by equation (10) then go to ②. 

⑥ When the   value converges, the calculation is over. 

The final *
is  point is called the design point. 

This iteration process makes the general solution for the non-linear limit state function.  

If the limit state function is linear, all partial derivatives are constant and the iteration 

is not necessary.  When the variables are non-Gaussian, the equivalent Gaussian 

distribution at the design point with corresponding   and  , which are used for the 

normalization of ix .  Then the same procedure is applicable for the non-Gaussian 

case. 

An alternative method to lead the same procedure is available to solve the distance of 

the limit state place to the origin in Figure 4 by applying the Lagrange multiplier 

method [4-1]. 

 

(2). Numerical Example for non-linear limit state function 

   2xrg    for a limit state function and  

 250R , 25R   for resistance 

 10X ,   2x   for load intensity  

Normalized variables are 25025  rr  and 102  xx , then 

   15040425 2  xxrg                                      (e1) 

The partial derivatives are;  

   25



r

g
 and 408 




x
x

g
                                   (e2) 

The first cycle, 

① ② 40



x

g
 for 0* x  

③ 53.0
4025

25
22



R  and 85.0

4025

40
22





X          (e3) 

④ Substituting 53.0* r  and 85.0* x  into equation (e1) =0, 

     72.2  is obtained.                                          (e5) 

⑤  *x  is renewed for the second cycle. 

The second cycle, 
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① ② 5.584031.28 



x

g
 for 31.272.285.0* x        (e6) 

③ 39.0
5.5825

25
22



R  and 92.0

5.5825

5.58
22





X        (e7) 

④ Substituting 39.0* r  and 92.0* x  into equation (e1) =0, 

     69.2  is obtained. 

⑤  *x  is renewed for the third cycle. 

⑥  The result shows the convergence.  And 69.2 . 

 

 

 

 

 

 

Figure 4.  Limit state surface on normalized co-ordinates 
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5. Limit State Design 
 

(1). Fundamentals for limit state: 

 Both various kinds of performance demands and the grade for performances have to be 

clearly specified.  In limit state design these kinds are defined by the limit states and 

the grade is defined by the reliability index. 

  The ultimate limit state is a limit state for the safety and the collapse for the system 

and the break for a member are typical ultimate limit states.  Often the maximum load 

bearing capacity is used as an alternative conservative definition for limit state. 

  The serviceability limit state is a limit state for the ordinary use and the elastic limit 

may be conveniently used as no damages are expected within the limit.  Often the 

deflection or acceleration are used for a specific demand such as the functionality of 

non-structural components or the human perception for motion. 

  Robustness is often referred for a required performance of structures, in particular for 

rare events.  It is not treated as a quantitative measure in ISO2394 [5-1] and only 

recommended as an additional requirement.  The definition of robustness can be a 

good theme of discussions in clarifying the nature of damages.  

 

(2). Simple basic formulation for LSD [5-2] 

Definition for the limit state function: 

   qrg                                                             (1) 

Then the probability of failure is described as: 

  
]Pr[]0Pr[ qrgPf 
 

  The reliability index corresponding to the fP
 is given by the mean   and standard 

deviation   as, 

22
qr

qr

g

g











                                               (2) 

  By introducing the separation factor  , 

    qqqrrr                                          (3) 

   The LRFD format can be written as, 

    qr                                                        (4) 
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  Or considering to the convenience of definition of design load and design strength currently 

used, 

  QR ˆˆ                                                             (4-1) 

where 
R

R




ˆ
   and 

Q

Q




ˆ
 .  R̂  and Q̂  are nominal values in current codes. 

 

(3) Load factor for Log-normal variable 

A common load factor format based on the log-normal load effect model is written as, 

N

Q
QQ

Q
QV


 


 )exp(

1

1
ln2

                                       (5) 

where Q  is the seismic load effect, QV  is the c.o.v. of Q ,   is the separation factor, 

  is the reliability index Qln  is the standard deviation of Qln , Q  is the mean of 

Q  and NQ  is the basic load, often defined in terms of the return period.  When the 

reduction factor considering the inelastic response is introduced simply as a multiplying 

factor such as Ds , the same form as eq.(4) in Chapter 3 can be used with modified the 

c.o.v. and the standard deviation considering the uncertainty of such a factor. 

 

(4). Load factor considering inelastic responses 

Now we propose a new form where the inelastic response characteristics are 

systematically considered.  The seismic load effect in inelastic range can be expressed 

in terms of the equivalent elastic response, *Q , as defined in the Figure 3. By carrying 

out sufficient number of inelastic response analyses, we can find the relationship 

between *Q  and the input ground motion intensity, a .  Then such a relationship can 

be written as, 

yy
y

y

a

R Qaa
a

Q

m

m
Q 




 )(
1

1*                                         (6) 

where 
y

R
R Qm   (resistance margin) and 

y

u
a a

am   (input margin).  R  is the 

mean of resistance in terms of *Q , ua  and ya  are the PGA causing the response 
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equal to the mean of yielding resistance yQ  and the mean of ultimate resistance R . 

  For the log-normal variables of the resistance and the load effect, the reliability index 

  is obtained as, 

   
22

*lnln

QR

QR







                                                  (7) 

where  indicates the mean and   indicates the logarithmic standard deviation.  

When eq.(6) is reduced to the linear relationship between *ln Q  and aln  as, 

   yy
a

R Qaa
m

m
Q ln)ln(ln

ln

ln
ln *                                    (8) 

This equation enables the transformation from a log-normal variable, a  to another 

log-normal variable *Q , then, [3-2] 
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where a  is the mean of maximum PGA for a reference period, e.g. 50 years.  

Schematic diagram for eq.(6) and eq.(9), is shown in Figure 3.  By assuming 

Q

y

a

y Qa
  , which is the relationship between the PGA and the elastic response, 

and neglecting the variation caused by the elastic response analysis, i.e. by assuming 

aQ   , eq.(9) can be rewritten as, 
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        (10) 

where   is the separation factor.  Then the load factor design format may be written 

for the yield strength resistance rather than the ultimate resistance by equating Ry  

to yQ , 
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   Q
a
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RR mVm

m
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)exp(
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1

ln

ln
exp

2





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


                (11) 

In comparison with the load factor format by eq.(5), 
am

1 corresponds to the inelastic 

performance factor Ds .  The term 
R

a

m

m

ln

ln
 in the resistance factor will be in the range 

of 0.5 to 2 according to the ratio of the fundamental frequency of the structure and the 

dominant frequency of the input motion depending on the type of hysteretic behavior. 

   

 

Figure 5.  Schematic diagram for probabilistic inelastic responses 
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(5). Possible advantages for Limit State Design  

  AIJ has conducted a competition for Active Use of LSD in 1999 and 6 excellent 

proposals among 43 proposals are now available in a form of Book published in2004 

[5-4].  Each proposal has a special theme for the use of LRFD.  They are: 

(1) Renovation of historical building – “conversation” with clients – 

(2) Limit State Design with the deflection as the performance measure – a trial for 

quantification of seismic performance – 

(3) Prevention of story collapse – Failure reliability of structural system – 

(4) Longer life building – Design procedure considering the time axis – 

(5) Revitatlization of traditional timber culture – LSD since there is a variability – 

(6) Cost and performance – Design considering life cycle of building – 

 

 

(6). Consideration on Load Factors 

There are two procedures for load factors.  When a characteristic value such as 

defined as a value corresponding to 100 year return period is used to define the 

representative value as used as the basic value in AIJ Load Recommendation (2004), 

load factors are estimated to satisfy the target reliability by considering the coefficient 

of variation of load effects and the separation factor.  Load factor values are generally 

greater than 1.  

The second procedure for load factors is that the unity load factor is used for a 

standard requirement case.  Then a load factor may be used as an importance factor 

considering failure consequences of the structure.  Different return periods will be used 

to define representative values for the serviceability limit and the ultimate limit.  

Some practical engineers prefer the second procedure to the original LRFD as they can 

consider the load intensity directly related to the exceedance probability, i.e. in a 

semi-deterministic manner.  However it has to be noted that the return period only 

indicates the probability of exceedance of the load intensity but uncertainties of other 

parameters are not well formulated in the second procedure.   

In the discussion of ISO draft for structural design framework, two procedures are 

adopted as alternative procedures [ISO/DIS 22111: Basis for design of structures – 

General Requirements].  In ISO 3010: Seismic Actions on Structures, two alternative 

sets of load factors are provided in annex.  Tables are shown for the consideration. 

Some more considerations are made for load factors by utilizing the return period 

conversion factor based on extreme value distributions.  
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Table A.1 – Example 1 for load factors  E,u and  E,s, and representative values kE,u and 

kE,s (where kE,u  kE,s) due to ISO3010(1999) [5-5] 

Limit state 

 

Degree of 

importance 

 

 E,u or  E,s 

 

kE,u or kE,s 

 

Return period 

for kE,u or kE,s 

kE,s の

Ultimate 

 

a) High  1,5 – 2,0 

0,4 
500 years 

 
b) Normal  1,0 

c) Low  0,4 – 0,8 

Serviceability 

 

a) High  1,5 – 3,0 

0,08 
20 years 

 
b) Normal  1,0 

c) Low  0,4 – 0,8 

Table A.2 – Example 2 for load factors  E,u and  E,s, and representative value kE 

Limit state 

 

Degree of 

importance 

 

 E,u or  E,s 

 

kE 

 

return period 

for kE 

 

Ultimate 

 

a) High  3,0 – 4,0 

0,2 
100 years 

 

b) Normal  2,0 

c) Low  0,8 – 1,6 

Serviceability 

 

a) High  0,6 – 1,2 

b) Normal  0,4 

c) Low  0,16 – 0,32 
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[5-2] T. Takada & J. Kanda: AIJ Recommendations for Limit State Design of Buildings, 
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[5-3]. Kanda, J. and Iwasaki, R., Stochastic Evaluation of Inelastic Response of 

Multi-degree-of-freedom Lumped Mass Models, Proceedings of 9th World Conference 

of Earthquake Engineering, vol.VIII, Tokyo, 1988, pp.797-804 

 

[5-4] Kanda, J. & Takada, T., Engineering Design Competition at Architectural 

Institute of Japan, Proceedings of 8th ASCE Conference on Probabilistic Mechanics 

and Structural Reliability, 2000. 

[5-5] ISO3010: Bases for design of structures – Seismic actions on structures. 2001. 
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6. Optimum Reliability Concept 
 

(1). Minimum Total Cost Principle [6-1]        

 The essential purpose of structural engineering is how to make a safe structure.  

While there is no 100% safety, only the structural engineering does not provide a 

sufficient answer to the question how safe is good enough.  Ideally you can state that a 

good balance among the safety, the functionality, the economy and the aesthetics, but if 

this balance is due to the decision of individual engineer, such solution may not be 

technologically treated. 

  The balance between the safety and the economy can be obtained by the minimum 

total expected cost.  This theme has been studied in Kanda laboratory since 1988.  

And the solution can be obtained relatively easily, once cost parameters are formulated 

and several proposals were reviewed in reference [6-2]. 

- Formulation 

  fFIT PCCC 
                                                        (1) 

where TC  is the total expected cost, IC  is the initial construction cost and FC  is the 

failure cost.  The initial construction cost has been studied and a linear form is 

confirmed for various types of buildings [6-2].  
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
                                                 (2) 

 The failure cost estimation is one of important issue for risk management.  In this 

simple formulation, it is treated as a subjective and deterministic quantity in terms of 

the reference value of the initial cost. 

     0gCCF                                                               (3) 

 The optimum condition can be obtained from the minimization of eq. (1), i.e., 

     
0

0


dr

dCT

                                                              (4) 

Closed form solutions are available for some probability models.  For example, 

Gaussian distribution case: 
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
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
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                                                 (5) 

Log-normal distribution case: 

           (6) 

The role of engineers has been discussed with regards to the normalized failure cost, g , 

as it could be an alternative measure for the target safety [6-3].  For example a 

simplified relation for seismic design may be as simple as, 

     7.1log  g                                                         (7) 

    Of course it is not so simple for determining the target reliability for structures or 

the load factors for the structural design.  Nevertheless it has to be stressed that the 

relation between the consequence evaluation and the required safety should be 

fundamentally reflected in the structural design.  

    Eq. (1) may be expanded by considering maintenance cost, failure cost due to 

several damage states and also the insurance coverage.  Then, 

    
 
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                          (8) 

  - optimum reliability depends on the hazard 

   One of interesting example can be shown only from consideration of eq. (2).  When 

eq. (2) is rewritten for a site or region with a different mean maximum load effect Q , 

then the cost-up gradient and the reference initial cost also change as, 
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  Eq. (9) should be exactly same as eq. (2) but with different parameters. 

Therefore, 
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 By simplifying with approximation, 

k

k

Q

Q 







 is obtained, when  1k  

  This relation explains that in a low seismicity region, the cost-up gradient becomes 

smaller and the higher reliability becoms optimum than that in a high seismicity region.  

When you can make your structure safer with less expenditure, you should have a safer 

structure.  On the other hand if it is too expensive to provide a higher safety in a high 

seismicity region, you cannot afford to have a safety degree as that in the low seismicity 

region. 

 

(2). Multiple levels of damages 

The continuous damage model is considered here [6-4].  Then the normalized failure 

cost )(xg can be written as, 

     21
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)( gg
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xx
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
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

                                      (10) 

where x  is the load intensity measure and 0.1x  corresponds to the collapse 

level. 2.00 x , 3.21 g  and 1.02 g  are assumed here and 2  is assumed.  

The ranges for 4.02.0  x  and 7.04.0  x  are regarded as the minor and 

moderate damages respectively.  Computed results of the total expected cost is shown 

in Figure 6, by indicating the contributions of expected damage costs for damage levels. 

 

The c.o.v. value is another key parameter for the optimum safety.  Cases for 30%, 60% 

and 90% are shown in Figure 7.  A higher load factor becomes the optimum for higher 

c.o.v. cases but the optimum reliability is lower.  When the c.o.v. value is high, it is 

expensive to design a high target reliability index, and so we have to accept a relatively 

lower target reliability.  Engineer should provide a good estimation for c.o.v. of loads at 

a specific site based on the most recent findings. 

 

When the consequence of collapse is considered, the failure cost estimation is a key 

factor for the optimum degree of safety [6-3].  Figure 8 demonstrates the effects of the 

normalized failure cost, g , where the single damage state is considered.  The 

minimum requirement for the collapse could be 1g , but such a lowest standard may 

not be accepted by majority of residents.  A higher g  value may be claimed by the 
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neighbor people but reasonable failure consequences should be discussed to have a 

consensus. 

 

Another factor to be considered is the design service lifetime of the structure.  The 

developer or investor considers a relatively short time since they will expect profit from 

the investment in a short range of time such as 5 or 10 years.  On the contrary, people 

who want to live for their whole lives or leave properties for their descendants consider 

a relatively long time such as 50 years or 200 years.  The effect of such time span for 

the probability is certainly of some significance.  The results are shown in Figure 9.  

The discount rate may be considered with some uncertainty for the future time 

discussion. 

 

(3). Evaluation of Environmental Impacts 

  The total life-cycle cost concept can be simply expanded to the CO2 emission 

evaluation.  Some of results show that the lower safety becomes optimum as the 

structural portion has a higher contribution in the CO2 emission than the cost.  It is 

discussed how to combine these different solutions [6-4].  

  There are more aspects for the evaluation of environmental impacts rather than the 

CO2 emission evaluation.  It is an open question how to minimize the environmental 

impact in construction. 

Since the concern of global environment increases, the CO2 emission may be an 

alternative measure to the monetary cost.  The structural portion of initial cost is in 

the order of 25%, while the structural portion of CO2 emission is in the order of 50% 

which is the ratio of the weight.[Kanda and Kanda, 2002]  Then the gradient of initial 

cost to the load factor may be doubled then the optimal design safety will be lowered for 

the case of minimization of total CO2 emission.  This is demonstrated in Figure 10. The 

vertical axis indicates the cost and the CO2 emission normalized by the reference value 

at load factor 1.  

 

As demonstrated in figures with various conditions for parameters, the way of 

individual considerations causes the difference in the optimal safety as each individual 

has a different estimation of parameters.  Stakeholders will have different advantages 

and disadvantages due to the degree of safety.  The local authority could play a role of 

judge rather than checking the conformity to the regulation.  Once the consensus is 

made, this will be an ideal way of acceptance of the safety requirements in a community. 
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Figures shown here are based on a simple model and only examples. Nevertheless 

influences of parameters can be seen in a realistic manner.  If more specific 

information is available, models can be replaced or improved.  Once the framework of 

the safety role in a form such as eq.(1), the meaning of safety will be understood by such 

analytical examinations to find influences of specific quantitative demands such as the 

damage levels, failure consequences, service lifetime and so on.  
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Figure 6: Optimal design safety with expected damage costs[6-6] 

Figure 7: Optimal design safety with various c.o.v. cases [6-6] 
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 Figure 9: Optimal design safety with various service lifetimes [6-6] 

Figure 8: Optimal design safety with various normalized failure cost [6-6] 
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Figure 10: Optimal design safety for total cost and total CO2 emission  [6-6] 


